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Let’'s Play a Game

 Game set-up

» \We have a fair coin (come up “heads” with p = 0.5

» et n = number of coin flips (“heads”) before first
“tails”

= You win $2"
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z- How much would you pay to play?
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Mutual exclusion
And
Independence

Are two properties of
events that make it easy
to calculate probabillities.




Conditional Probability

P(EF)
P(F)

P(E|F) =

What is your new belief that E will
occur, given that you have observed
F occurred




In the conditional
paradigm, the formulas of
probability are preserved.

Piech, CS106A, Stanford University



BAE's Theorem?

pia|BE)= P(B lPA(§)| FI;()Al E)

l-"l‘.r“l".'jnr M
0‘ n"}~"'! - e "".~n
“ i,‘ i “




Learning Goals

1. Be able to use conditional independence definition
2. Be able to define a random variable (R.V.)
3. Be able to use and produce a PMF of a R.V.
4. Be able fo calculate the expectation of the R.V.
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14 False,False,True,True,False,False
15 True,True,False,False,True,True

16 True,False,True,True,False,False
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18 True,False,True,False,False,True
19 False,True,False,True,True,True

20 False,False,True,False,False,False
21 False,False,False,True,True,False
22 False,True,False,False,True,False
23 True,True,False,True,True,True

24 False,True,False,True,True,False
25 True,False,False,False,False,True
26 False,False,True,True,False,True
27 False,False,False,True,False,False
28 False,True,True,False,False,True
29 False,True,False,False,True,True
30 False,False,False,False,False,True
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Discovered Pattern

Piech-2:dna piech$ python findStructure.py
size data = 100000

p(Gl) = 9.500

p(G2) = 0.545

p(G3) = 0.299

p(G4) = 0.701

p(G5) = 0.600

p(T) = 0.390

p(T and G1) = 0.291 , P(T)p(G1l) = 0.195
p(T and G2) = 0.300 , P(T)p(G2) = 0.213
p(T and G3) = 0.116 , P(T)p(G3) = 0.117
p(T and G4) = 0.273 , P(T)p(G4) = 0.273
p(T and G5) = 0.309 , P(T)p(G5) = 0.234

p(T and G5 | G2) = 0.450
p(T | G2)p(G5 | G2) = 0.450




Independence
relationships can change
with conditioning.

If E and F are independent, that does not mean they will still
be independent given another event G.

There is additional reading about this in the course reader. You will explore this more in depth in CS228




Two Great Tastes

Conditional Probability Independence




Conditional Independence

- Two events E and F are called conditionally
independent given G, if

P(EF|G) = P(FE|G)P(F|G)
+ Or, equivalently if:

P(E|FG) = P(E|G)




Conditional Paradigm

- For any events A, B, and E, you can condition

consistently on E, and all formulas still hold:

PAB|E)=P(BA|E)

P(AB|E)=P(A|BE)P(B|E)

- Can think of E as “everything you already know”
- Formally, P( e | E) satisfies 3 axioms of probability




NETELIX



Neiflix and Learn

What is the probability
that a user will watch
Life is Beautiful?

P(E)

P(E) = 10,234,231 /50,923,123 = 0.20




Neiflix and Learn

ALBREY TAUTOU T Marme Kassovnz

What is the probability
that a user will watch
Life is Beautiful, given
they watched Amelie?

P(E|F)

P(EF)  #people who watched both

P(E\F) = =
(E]F) P(F) #people who watched F

P(E|F)=0.42




Conditioned on liking a set of movies?



Neiflix and Learn

Each event corresponds to liking a particular movie

NAIROB! HALF LIFE
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Is E, independent of E4,E,,E;?



Neiflix and Learn

Is E, independent of E4,E,,E;?

NAIROB! HALF LIFE
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Neiflix and Learn

Is E, independent of E4,E,,E;?

NAIROB! HALF LIFE




Neiflix and Learn

- What is the probability that a user watched four
particular movies?

« There are 13,000 titles on Netflix

» The user watches 30 random titles.

« E = movies watched include the given four.

Solution:

Watch those four Choose 24 movies

not in the set
4) (12996 &

N
P(E) = <4(130§§) ) =10""

30

2
Choose 30 movies
from netflix




Neiflix and Learn
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Neiflix and Learn

K;

Like foreign emotional comedies

NAIROBI HALF LIFE
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Neiflix and Learn
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Like foreign emotional comedies
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Neiflix and Learn

K;

Like fareign emotional comedies

NAIROBI HALF LIFE
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Neiflix and Learn

K;

Like foreign emotional comedies

NAIROBI HALF LIFE
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Assume E,, E,, E; and E, are conditionally independent given K ‘2




Conditional independence is a
practical, real world way of
decomposing hard probability
guestions.



Conditional Independence

If E and F are
dependent,

that does not mean E and
F will be dependent
when another event Is
observed.




Conditional Dependence

If E and F are
Independent,

that does not mean E and
F will be independent
when another event Is
observed.




Big Deal

“Exploiting conditional independence to
generate fast probabilistic computations is one
of the main contributions CS has made to
probability theory”

-Judea Pearl wins 2011 Turing Award, “For
fundamental contributions to artificial intelligence through
the development of a calculus for probabilistic and causal
reasoning”




Ready for the next (cs109) episode



Random Variables



Remember Learning to Code?

N

name
"”be
int a = 5;
double b = 4.2;
bit ¢ = 1;
choice d = medium;

z € {high, medium, low}

Random variables are like programming variables, with uncertainty



Pirates of the Random Variables

A 1s the number of pirate

int a = 5; o
ships 1n our future armada.
Aedl,2,...,10}
double b = 4.2; Bistheamountof money we
get after we defeat Blackbeard/.},__ &,
BeR* gk
bit ¢ = 1; C is 1 if we successfully raid

Isla de Muerta. 0 otherwise.
C e{0,1}



Random Variable

- A Random Variable is a variable will have a

value. But there is uncertainty as to what value.

- Example:

« 3 fair coins are flipped.

« Y = number of “heads” on 3 coins
= Y is a random variable

- P(Y=0)=1/8 (T, T, T)

- P(Y=1)=3/8 (H, T, T), (T, H, T), (T, T, H)
P(Y=2)=3/8 (H,H, T),(H, T, H), (T, H, H)

- P(Y=3)=1/8 (H, H, H)

- P(Y=24)=0



It is confusing that both random variables
and events use the same notation



Random variables and
events are two different
things

Piech, CS106A, Stanford University



We can define an event to
be a particular assignment
to a random variables

Piech, CS106A, Stanford University



Example Random Variable

. Consider 5 coin flips, each which independently
come up heads with probability p

= Recall:

P(2 heads) — (2) P2(1— p)?

P(3 heads) = <§)p3(1 —p)?
= Y = number of “heads” on 5 flips

Y e{1,2,...,5}

Py =1 = ()i -p

* Pro tip: no coin works like this... but many real world binary events do



Fun with Random Variables

. Probability Mass Function:

P(X ~ a) Learnin
g
_ goals for
- Expectation: today
ELX]
- Variance:

Var(X)



1. Probability Mass Function



All the different assignments to a random
variable make a function



Let Y be a random variable

/
Y

For example Y is the number of heads in 5 coin flips



Y =2

It is an event when
Y takes on a value

For example Y is the number of heads in 5 coin flips



If this is a number

Then this is a number
(between O and 1)

For example Y is the number of heads in 5 coin flips



If this is a variable

N
P(Y = k)

s -

Then this is a function

For example Y is the number of heads in 5 coin flips



Random Variables -> Functions

S

L — 5 0.03125

For example Y is the number of heads in 5 coin flips



Random Variables -> Functions

P(Y = k)

private double eventProbability(int k) {

int ways = choose(N, K);
double a = Math.pow(P, K);
double b = Math.pow(P, N-K);

return ways * a * b;

h

private static final int N = 5;
private static final double P = 9.5;

For example Y is the number of heads in 5 coin flips



If a random variable is
discrete we call this function
the Probability Mass
Function

Piech, CS106A, Stanford University



Probability Mass Function

Let X be a random variable that represents the result of
a single dice roll. X can take on the values {1, 2, 3, 4, 5, 6}

:1: This is shorthand
p notation for the PMF

x This is also shorthand
pX notation for the PMF
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PMF For a Single 6 Sided Dice

(x=X)d

1/6
0



PMF for the sum of two dice
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PMF as an Equation

z—1 freZ , 1<x<6

36

pX=2)=<2 jfpecZ, 7<z<12

36

0 else

Again, this 1s the probability for the sum of two dice
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*errata: in lecture this formula
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Sanity Check



Sanity Check
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2. Expectation



Expected Value

- The Expected Values for a discrete random
variable X is defined as:

EX]= > =z px)
x:p(x)>0

- Note: sum over all values of x that have p(x) > 0.

- Expected value also called: Mean, Expectation,
Weighted Average, Center of Mass, 15t Moment



Expected Value

- Roll a 6-Sided Die. X is outcome of roll

= p(1) =p(2) =p(3) =p(4) =p(3) =p(6) =1/6

R O RO OR OO

. Y IS random variable

- P(Y=1)=1/3, P(Y=2)=1/6, P(Y=3)=1/2
. E[Y]=1(1/3)+2 (1/6) + 3 (1/2) = 13/6



Lying with Statistics

“There are three kinds of lies:
lies, damned lies, and statistics”

— Mark Twain

. School has 3 classes with 5, 10 and 150 students

- Randomly choose a class with equal probability

. X = sijze of chosen class

. What is E[X]?
. E[X] =5 (1/3) + 10 (1/3) + 150 (1/3)
= 165/3 = 55



Lying with Statistics

“There are three kinds of lies:
lies, damned lies, and statistics”

— Mark Twain

- School has 3 classes with 5, 10 and 150 students

- Randomly choose a student with equal probability

- Y = size of class that student is in

- What is E[Y]?

- E[Y] =5 (5/165)+ 10 (10/165) + 150 (150/165)
= 22635/165 ~ 137

- Note: E[Y] is students’ perception of class size

« But E[X] is what is usually reported by schools!



Properties of Expectation

. Linearity:

FElaX +b] =aF[X]|+b

= Consider X = 6-sided dieroll, Y =2X —-1.
= E[X]=3.5 E[Y]=6

- Expectation of a sum is the sum of expectations

E[X +Y] = E[X] + E[Y]

- Unconscious statistician:

Elg(z)] = g(x)p(z)



Wonderful



St Petersburg

. Game set-up

« We have a fair coin (come up “heads” with p = 0.5)

« Let n = number of coin flips (“heads”) before first “tails”
= You win $2"

| - How much would you pay to play?
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St Petersburg

Game set-up

« We have a fair coin (come up “heads” with p = 0.5)
« Let n = number of coin flips ("heads”) before first “tails”
= You win $2"

How much would you pay to play?

. Solution

« Let X = your winnings

~ 1 1 0 1 2 1 1 3 2 1 4 3 ) © (1 i+1 |
- E[X] = (5)2 +(§j 2 +(5) 2 +(5) 2% 1. _;:‘(5) 2
_Z__OO

= ['ll let you play for $1 thousand... but just once! Takers?



St Petersburg + Reality

- What if Chris has only $65,5367

« Same game
= If you win over $65,536 | leave the country.

. Solution

« Let X = your winnings

B = () e (3) e (1) e (1) e
1

1+1 '
(5) 2" 5.t. k = log,(65,536)

I

0
6

1

[

= 8.5

DO | —

1=0



Learning Goals

1. Be able to use conditional independence
2. Be able to define a random variable (R.V.)
3. Be able to use + produce a PMF of a R.V.
4. Be able fo calculate the expectation of the R.V.




