

Ultimate Probability

Let's Play a Game

- Game set-up
 - We have a fair coin (come up "heads" with p = 0.5)
 - Let n = number of coin flips ("heads") before first "tails"
 - You win \$2ⁿ

How much would you pay to play?

Mutual exclusion And Independence

Are two properties of events that make it easy to calculate probabilities.

Conditional Probability

What is your new belief that E will occur, given that you have observed F occurred

In the conditional paradigm, the formulas of probability are preserved.

BAE's Theorem?

$$P(A \mid B \mid E) = \frac{P(B \mid A \mid E) P(A \mid E)}{P(B \mid E)}$$

Piech, CS106A, Stanford University

Learning Goals

- 1. Be able to use conditional independence definition
 - 2. Be able to define a random variable (R.V.)
 - 3. Be able to use and produce a PMF of a R.V.
 - 4. Be able to calculate the expectation of the R.V.

6 observations per sample

Discovered Pattern

```
Piech-2:dna piech$ python findStructure.py
size data = 100000
p(G1) = 0.500
p(G2) = 0.545
p(G3) = 0.299
p(G4) = 0.701
p(G5) = 0.600
p(T) = 0.390
p(T \text{ and } G1) = 0.291 , P(T)p(G1) = 0.195
p(T \text{ and } G2) = 0.300 , P(T)p(G2) = 0.213
p(T \text{ and } G3) = 0.116 , P(T)p(G3) = 0.117
p(T \text{ and } G4) = 0.273, P(T)p(G4) = 0.273
p(T \text{ and } G5) = 0.309 , P(T)p(G5) = 0.234
```

• • •

$$p(T \text{ and } G5 \mid G2) = 0.450$$

 $p(T \mid G2)p(G5 \mid G2) = 0.450$

Independence relationships can change with conditioning.

If E and F are independent, that does not mean they will still be independent given another event G.

Two Great Tastes

Conditional Probability

Independence

Conditional Independence

 Two events E and F are called <u>conditionally</u> <u>independent given G</u>, if

$$P(EF|G) = P(E|G)P(F|G)$$

Or, equivalently if:

$$P(E|FG) = P(E|G)$$

Conditional Paradigm

 For any events A, B, and E, you can condition consistently on E, and all formulas still hold:

$$P(A B | E) = P(B A | E)$$

$$P(A B | E) = P(A | B E) P(B | E)$$

- Can think of E as "everything you already know"
- Formally, P(| E) satisfies 3 axioms of probability

And Learn

What is the probability that a user will watch Life is Beautiful?

P(E)

$$P(E) = \lim_{n \to \infty} \frac{n(E)}{n} \approx \frac{\text{\#people who watched movie}}{\text{\#people on Netflix}}$$

$$P(E) = 10,234,231 / 50,923,123 = 0.20$$

What is the probability that a user will watch Life is Beautiful, given they watched Amelie?

$$P(E|F) = \frac{P(EF)}{P(F)} = \frac{\text{\#people who watched both}}{\text{\#people who watched } F}$$

$$P(E|F) = 0.42$$

Conditioned on liking a set of movies?

Each event corresponds to liking a particular movie

 E_1

 E_2

 E_3

 E_4

$$P(E_4|E_1,E_2,E_3)$$
?

Is E_4 independent of E_1, E_2, E_3 ?

Is E_4 independent of E_1, E_2, E_3 ?

 E_1

 E_2

 E_3

 E_4

$$P(E_4|E_1, E_2, E_3) \stackrel{?}{=} P(E_4)$$

Is E_4 independent of E_1, E_2, E_3 ?

 E_1

 E_2

 E_3

 E_4

$$P(E_4|E_1, E_2, E_3) = \frac{P(E_1 E_2 E_3 E_4)}{P(E_1 E_2 E_3)}$$

- What is the probability that a user watched four particular movies?
 - There are 13,000 titles on Netflix
 - The user watches 30 random titles.
 - E = movies watched include the given four.

• Solution: Watch those four Choose 24 movies not in the set
$$P(E) = \frac{\binom{4}{4}\binom{12996}{24}}{\binom{13000}{30}} = 10^{-11}$$

Choose 30 movies from netflix

 E_1

 E_2

 E_3

 E_4

 K_{l} Like foreign emotional comedies

 K_{l} Like foreign emotional comedies

Assume E_1 , E_2 , E_3 and E_4 are conditionally independent given K_1

Assume E₁, E₂, E₃ and E₄ are conditionally independent given K

Assume E₁, E₂, E₃ and E₄ are conditionally independent given I

Conditional independence is a practical, real world way of decomposing hard probability questions.

Conditional Independence

If E and F are dependent,

that does not mean E and F will be dependent when another event is observed.

Conditional Dependence

If E and F are independent,

that does not mean E and F will be independent when another event is observed.

Big Deal

"Exploiting conditional independence to generate fast probabilistic computations is one of the main contributions CS has made to probability theory"

-Judea Pearl wins 2011 Turing Award, "For fundamental contributions to artificial intelligence through the development of a calculus for probabilistic and causal reasoning"

Ready for the next (cs109) episode

Random Variables

Remember Learning to Code?

```
name
                     Value
   int a = 5;
   double b = 4.2;
   bit c = 1;
   choice d = medium;
z \in \{\text{high, medium, low}\}\
```

Random variables are like programming variables, with uncertainty

Pirates of the Random Variables

A is the number of pirate ships in our *future* armada.

$$A \in \{1, 2, \dots, 10\}$$

double b = 4.2;

B is the amount of money we get after we defeat Blackbeard.

$$B \in \mathbb{R}^+$$

C is 1 if we successfully raid Isla de Muerta. 0 otherwise.

$$C \in \{0, 1\}$$

Random Variable

- A <u>Random Variable</u> is a variable will have a value. But there is uncertainty as to what value.
- Example:
 - 3 fair coins are flipped.
 - Y = number of "heads" on 3 coins
 - Y is a random variable

■
$$P(Y \ge 4) = 0$$

It is confusing that both random variables and events use the same notation

Random variables and events are two *different* things

We can define an event to be a particular assignment to a random variables

Example Random Variable

- Consider 5 coin flips, each which independently come up heads with probability p
 - Recall:

$$P(2 \text{ heads}) = {5 \choose 2} p^2 (1-p)^3$$
$$P(3 \text{ heads}) = {5 \choose 3} p^3 (1-p)^2$$

Y = number of "heads" on 5 flips

$$Y \in \{1, 2, \dots, 5\}$$

$$P(Y = k) = {5 \choose k} p^k (1-p)^{5-k}$$

^{*} Pro tip: no coin works like this... but many real world binary events do

Fun with Random Variables

• Probability Mass Function:

$$P(X=a)$$

• Expectation:

• Variance:

1. Probability Mass Function

All the different assignments to a random variable make a function

Let Y be a random variable

Y

$$Y=2$$

It is an event when Y takes on a value

Then this is a number (between 0 and 1)

If this is a variable

Then this is a function

Random Variables -> Functions

$$P(Y = k)$$

$$k = 5$$

$$0.03125$$

Random Variables -> Functions

$$P(Y=k)$$

```
private double eventProbability(int k) {
    int ways = choose(N, k);
    double a = Math.pow(P, k);
    double b = Math.pow(P, N-k);
    return ways * a * b;
}

private static final int N = 5;
private static final double P = 0.5;
```


If a random variable is discrete we call this function the Probability Mass Function

Probability Mass Function

Let *X* be a random variable that represents the result of a **single dice roll**. *X* can take on the values {1, 2, 3, 4, 5, 6}

$$P(X=x)$$

$$p(x)$$
 This is shorthand notation for the PMF

$$p_{x}(x)$$
 This is also shorthand notation for the PMF

PMF For a Single 6 Sided Dice

PMF for the sum of two dice

PMF as an Equation

$$p(X = x) = \begin{cases} \frac{x-1}{36} & \text{if } x \in \mathbb{Z} , 1 \le x \le 6\\ \frac{13-x}{36} & \text{if } x \in \mathbb{Z} , 7 \le x \le 12\\ 0 & \text{else} \end{cases}$$

Again, this is the probability for the sum of two dice

*errata: in lecture this formula had some small mistakes ©

Sanity Check

$$\sum_{\text{all } k} P(Y = k) \stackrel{?}{=}$$

Sanity Check

$$\sum_{\text{all } k} P(Y = k) \stackrel{?}{=}$$

Sanity Check

$$\sum_{k} P(Y = k) = 1$$

2. Expectation

Expected Value

 The Expected Values for a discrete random variable X is defined as:

$$E[X] = \sum_{x:p(x)>0} x \cdot p(x)$$

• Note: sum over all values of x that have p(x) > 0.

Expected value also called: Mean, Expectation,
 Weighted Average, Center of Mass, 1st Moment

Expected Value

Roll a 6-Sided Die. X is outcome of roll

•
$$p(1) = p(2) = p(3) = p(4) = p(5) = p(6) = 1/6$$

•
$$E[X] = 1\left(\frac{1}{6}\right) + 2\left(\frac{1}{6}\right) + 3\left(\frac{1}{6}\right) + 4\left(\frac{1}{6}\right) + 5\left(\frac{1}{6}\right) + 6\left(\frac{1}{6}\right) = \frac{7}{2}$$

Y is random variable

•
$$P(Y = 1) = 1/3$$
, $P(Y = 2) = 1/6$, $P(Y = 3) = 1/2$

• E[Y] = 1 (1/3) + 2 (1/6) + 3 (1/2) = 13/6

Lying with Statistics

"There are three kinds of lies: lies, damned lies, and statistics"

– Mark Twain

- School has 3 classes with 5, 10 and 150 students
- Randomly choose a <u>class</u> with equal probability
- X = size of chosen class
- What is E[X]?

•
$$E[X]$$
 = 5 (1/3) + 10 (1/3) + 150 (1/3)
= 165/3 = 55

Lying with Statistics

"There are three kinds of lies: lies, damned lies, and statistics"

- Mark Twain

- School has 3 classes with 5, 10 and 150 students
- Randomly choose a <u>student</u> with equal probability
- Y = size of class that student is in
- What is E[Y]?
 - E[Y] = 5(5/165) + 10(10/165) + 150(150/165)= $22635/165 \approx 137$
- Note: E[Y] is students' perception of class size
 - But E[X] is what is usually reported by schools!

Properties of Expectation

Linearity:

$$E[aX + b] = aE[X] + b$$

- Consider X = 6-sided die roll, Y = 2X 1.
- E[X] = 3.5 E[Y] = 6

Expectation of a sum is the sum of expectations

$$E[X+Y] = E[X] + E[Y]$$

Unconscious statistician:

$$E[g(x)] = \sum_{x} g(x)p(x)$$

Wonderful

St Petersburg

- Game set-up
 - We have a fair coin (come up "heads" with p = 0.5)
 - Let n = number of coin flips ("heads") before first "tails"
 - You win \$2ⁿ

How much would you pay to play?

St Petersburg

- Game set-up
 - We have a fair coin (come up "heads" with p = 0.5)
 - Let n = number of coin flips ("heads") before first "tails"
 - You win \$2ⁿ
- How much would you pay to play?
- Solution
 - Let X = your winnings

•
$$E[X] = \left(\frac{1}{2}\right)^1 2^0 + \left(\frac{1}{2}\right)^2 2^1 + \left(\frac{1}{2}\right)^3 2^2 + \left(\frac{1}{2}\right)^4 2^3 + \dots = \sum_{i=0}^{\infty} \left(\frac{1}{2}\right)^{i+1} 2^i$$

$$= \sum_{i=0}^{\infty} \frac{1}{2} = \infty$$

I'll let you play for \$1 thousand... but just once! Takers?

St Petersburg + Reality

- What if Chris has only \$65,536?
 - Same game
 - If you win over \$65,536 I leave the country.
- Solution
 - Let X = your winnings

• E[X]
$$= \left(\frac{1}{2}\right)^1 2^0 + \left(\frac{1}{2}\right)^2 2^1 + \left(\frac{1}{2}\right)^3 2^2 + \left(\frac{1}{2}\right)^4 2^3 + \dots$$

 $= \sum_{i=0}^k \left(\frac{1}{2}\right)^{i+1} 2^i \text{ s.t. } k = \log_2(65, 536)$
 $= \sum_{i=0}^{16} \frac{1}{2} = 8.5$

Learning Goals

- 1. Be able to use conditional independence
- 2. Be able to define a random variable (R.V.)
- 3. Be able to use + produce a PMF of a R.V.
- 4. Be able to calculate the expectation of the R.V.

